








be a single-channel byte or floating-point image of size (image.width – templ.width + 1, 
image.height – templ.height + 1). The matching method is chosen from one of the options 
listed below (we use I to denote the input image, T the template, and R the result image in the definitions). 
For each of these, there is also a normalized version10: 

 

 

Figure 7-8: cv::matchTemplate() sweeps a template image patch across another image looking for 
matches 

Square difference matching method (method = cv::TM_SQDIFF) 

These methods match the squared difference, so a perfect match will be 0 and bad matches will be large: 

𝑅!"_!"## = 𝑇 𝑥!, 𝑦! − 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

 

Normalized square difference matching method (method = cv::TM_SQDIFF_NORMED) 

𝑅!"_!"##_!"#$%& =
𝑇 𝑥!, 𝑦! − 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

𝑇 𝑥!, 𝑦! !
!!,!! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!
 

Correlation matching methods (method = cv::TM_CCORR) 

These methods multiplicatively match the template against the image, so a perfect match will be large and 
bad matches will be small or zero. 

𝑅!!"## = 𝑇 𝑥!, 𝑦! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦!

!!,!!

 

Normalized cross-correlation matching method (method = cv::TM_SQDIFF_NORMED) 

𝑅!!"##_!"#$%& =
𝑇 𝑥!, 𝑦! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦!!!,!!

𝑇 𝑥!, 𝑦! !
!!,!! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!
 

                                                             
10 The normalized versions were first developed by Galton [Galton] as described by Rodgers [Rodgers88]. The 
normalized methods are useful, as they can help reduce the effects of lighting differences between the template and the 
image. In each case, the normalization coefficient is the same. 



 

Correlation coefficient matching methods (method = cv::TM_CCOEFF) 

These methods match a template relative to its mean against the image relative to its mean, so a perfect 
match will be 1.0 and a perfect mismatch will be -1.0; a value of 0.0 simply means that there is no 
correlation (random alignments). 

𝑅!!"#$$ = 𝑇! !!,!! ∙ 𝐼! !!!!,!!!!

!!,!!
 

𝑇! 𝑥!, 𝑦! = 𝑇 𝑥!, 𝑦! −
𝑇(𝑥!!, 𝑦!!)!!!,!!!

(𝑤 − ℎ)
 

𝐼! 𝑥 + 𝑥!, 𝑦 + 𝑦! = 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! −
𝐼(𝑥!!, 𝑦!!)!!!,!!!

(𝑤 − ℎ)
 

Normalized correlation coefficient matching method (method = cv::TM_CCOEFF_NORMED) 

𝑅!!"#$$_!"#$%& =
𝑇′ 𝑥!, 𝑦! ∙ 𝐼′ 𝑥 + 𝑥!, 𝑦 + 𝑦!!!,!!

𝑇′ 𝑥!, 𝑦! !
!!,!! ∙ 𝐼′ 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

 

Here T’ and I’ are as defined for cv::TM_CCOEFF. 

As usual, we obtain more accurate matches (at the cost of more computations) as we move from simpler 
measures (square difference) to the more sophisticated ones (correlation coefficient). It’s best to do some 
test trials of all these settings and then choose the one that best trades off accuracy for speed in your 
application. 

Be careful when interpreting your results. The square-difference methods show best 
matches with a minimum, whereas the correlation and correlation-coefficient methods 
show best matches at maximum points. 

Once we use cv::matchTemplate() to obtain a matching result image, we can then use 
cv::minMaxLoc() or cv::minMaxIdx() to find the location of the best match. Again, we want to 
ensure there’s an area of good match around that point in order to avoid random template alignments that 
just happen to work well. A good match should have good matches nearby, because slight misalignments of 
the template shouldn’t vary the results too much for real matches. Looking for the best matching “hill” can 
be done by slightly smoothing the result image before seeking the maximum (for correlation or correlation-
coefficient) or minimum (for square-difference matching methods). The morphological operators (for 
example) can be helpful in this context. 



 

Figure 7-9: Match results of six matching methods for the template search depicted in Figure 7-8: the best 
match for square difference is zero and for the other methods it’s the maximum point; thus, matches are 
indicated by dark areas in the left column and by bright spots in the other two columns 

Example 7-3 should give you a good idea of how the different template matching techniques behave. This 
program first reads in a template and image to be matched and then performs the matching via the methods 
we’ve discussed here. 

Example 7-3: Template matching 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
void help(){ 
 
  cout << "\n" 
    "Example of using matchTemplate(). The call is:\n" 
    "\n" 
    "ch7_ex7_5 template image_to_be_searched\n" 
    "\n" 
    "   This routine will search using all methods:\n" 
    "         cv::TM_SQDIFF        0\n" 
    "         cv::TM_SQDIFF_NORMED 1\n" 
    "         cv::TM_CCORR         2\n" 
    "         cv::TM_CCORR_NORMED  3\n" 
    "         cv::TM_CCOEFF        4\n" 
    "         cv::TM_CCOEFF_NORMED 5\n" 
    "\n"; 
} 
 
 
// Display the results of the matches 
//  
int main( int argc, char** argv ) { 
 
  if( argc != 3) { 
    help(); 



    return -1; 
  } 
 
  cv::Mat src, templ, ftmp[6]; // ftmp is what to display on     
 
  // Read in the template to be used for matching: 
  // 
  if((templ=cv::imread(argv[1], 1)).empty()) { 
    cout << "Error on reading template " << argv[1] << endl; 
    help(); return -1; 
  } 
 
  // Read in the source image to be searched: 
  // 
  if((src=cv::imread(argv[2], 1)).empty()) { 
    cout << "Error on reading src image " << argv[2] << endl; 
    help(); return -1; 
  } 
 
  // Do the matching of the template with the image 
  for(int i=0; i<6; ++i){ 
    cv::matchTemplate( src, templ, ftmp[i], i);  
    cv::normalize(ftmp[i],ftmp[i],1,0,cv::MINMAX); 
  } 
 
  // Display 
  // 
  cv::imshow( "Template", templ ); 
  cv::imshow( "Image", src ); 
  cv::imshow( "SQDIFF", ftmp[0] ); 
  cv::imshow( "SQDIFF_NORMED", ftmp[1] ); 
  cv::imshow( "CCORR", ftmp[2] ); 
  cv::imshow( "CCORR_NORMED", ftmp[3] ); 
  cv::imshow( "CCOEFF", ftmp[4] ); 
  cv::imshow( "CCOEFF_NORMED", ftmp[5] ); 
 
  // Let user view results: 
  // 
  cv::waitKey(0); 
} 

Note the use of cv::normalize() in this code, which allows us to display the results in a consistent 
way. (Recall that some of the matching methods can return negative-valued results.) We use the 
cv::MINMAX flag when normalizing; this tells the function to shift and scale the floating-point images so 
that all returned values are between 0.0 and 1.0. Figure 7-9 shows the results of sweeping the face 
template over the source image (shown in Figure 7-9) using each of cv::matchTemplate()’s 
available matching methods. In outdoor imagery especially, it’s almost always better to use one of the 
normalized methods. Among those, correlation coefficient gives the most clearly delineated match—but, as 
expected, at a greater computational cost. For a specific application, such as automatic parts inspection or 
tracking features in a video, you should try all the methods and find the speed and accuracy trade-off that 
best serves your needs. 

Summary 
In this chapter, we learned how OpenCV represents histograms at dense or sparse matrix objects. In 
practice, such histograms are typically used to represent probability density functions, which associate 
probability amplitude to every element of an array of some number of dimensions. We learned how to do 
basic operations on arrays, which are useful when interpreting arrays as probability distributions—such as 
normalization and comparison with other distributions. 



Exercises 
1. Generate 1,000 random numbers 𝑟i between 0.0 and 1.0. Decide on a bin size and then take a 

histogram of 1/𝑟i. 
a) Are there similar numbers of entries (i.e., within a factor of ±10) in each histogram bin? 
b) Propose a way of dealing with distributions that are highly nonlinear so that each bin has, within a 

factor of 10, the same amount of data. 
2. Take three images of a hand in each of the three lighting conditions discussed in the text. Use 

cv::calcHist() to make an RGB histogram of the flesh color of one of the hands photographed 
indoors. 
a) Try using just a few large bins (e.g., 2 per dimension), a medium number of bins (16 per 

dimension) and many bins (256 per dimension). Then run a matching routine (using all histogram 
matching methods) against the other indoor lighting images of hands. Describe what you find. 

b) Now add 8 and then 32 bins per dimension and try matching across lighting conditions (train on 
indoor, test on outdoor). Describe the results. 

3. As in exercise 2, gather RGB histograms of hand flesh color. Take one of the indoor histogram 
samples as your model and measure EMD (earth mover’s distance) against the second indoor 
histogram and against the first outdoor shaded and first outdoor sunlit histograms. Use these 
measurements to set a distance threshold. 
a) Using this EMD threshold, see how well you detect the flesh histogram of the third indoor 

histogram, the second outdoor shaded, and the second outdoor sunlit histograms. Report your 
results. 

b) Take histograms of randomly chosen nonflesh background patches to see how well your EMD 
discriminates. Can it reject the background while matching the true flesh histograms? 

4. Using your collection of hand images, design a histogram that can determine under which of the three 
lighting conditions a given image was captured. Toward this end, you should create features—perhaps 
sampling from parts of the whole scene, sampling brightness values, and/or sampling relative 
brightness (e.g., from top to bottom patches in the frame) or gradients from center to edges. 

5. Assemble three histograms of flesh models from each of our three lighting conditions. 
a) Use the first histograms from indoor, outdoor shaded, and outdoor sunlit as your models. Test 

each one of these against the second images in each respective class to see how well the flesh-
matching score works. Report matches. 

b) Use the “scene detector” you devised in part a, to create a “switching histogram” model. First use 
the scene detector to determine which histogram model to use: indoor, outdoor shaded, or outdoor 
sunlit. Then use the corresponding flesh model to accept or reject the second flesh patch under all 
three conditions. How well does this switching model work? 

6. Create a flesh-region interest (or “attention”) detector. 
a) Just indoors for now, use several samples of hand and face flesh to create an RGB histogram. 
b) Use cv::calcBackProject() to find areas of flesh. 

c) Use cv::erode() from Chapter 5 to clean up noise and then cv::floodFill() (from the 
same chapter) to find large areas of flesh in an image. These are your “attention” regions. 

7. Try some hand-gesture recognition. Photograph a hand about two feet from the camera; create some 
(nonmoving) hand gestures: thumb up, thumb left, and thumb right. 
a) Using your attention detector from exercise 6, take image gradients in the area of detected flesh 

around the hand and create a histogram model for each of the three gestures. Also create a 
histogram of the face (if there’s a face in the image) so that you’ll have a (nongesture) model of 
that large flesh region. You might also take histograms of some similar but nongesture hand 
positions, just so they won’t be confused with the actual gestures. 



b) Test for recognition using a webcam: use the flesh interest regions to find “potential hands”; take 
gradients in each flesh region; use histogram matching above a threshold to detect the gesture. If 
two models are above threshold, take the better match as the winner. 

c) Move your hand one to two feet further back and see if the gradient histogram can still recognize 
the gestures. Report. 

8. Repeat exercise 7 but with EMD for the matching. What happens to EMD as you move your hand 
back? 

9. With the same images as before but with captured image patches instead of histograms of the flesh 
around the hand, use cv::matchTemplate() instead of histogram matching. What happens to 
template matching when you move your hand backwards so that its size is smaller in the image? 

10. With your hands facing a camera, take the gradient direction of several pictures of your open hand, a 
closed fist and a “thumbs up” gesture. Collect histograms of the gradient direction in a window around 
your hands. This becomes your trained “model”.  Now run live and use the various histogram matching 
techniques to see how well they can recognize your gestures. 




